FREE CONVECTION OF NONLINEARLY-VISCOUS
LIQUIDS AROUND AXISYMMETRIC SOLIDS, ALLOWING
FOR THE TEMPERATURE DEPENDENCE OF THE
CONSISTENCY
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and V. I. Baikov

The effect of the temperature dependence of the consistency coefficient, the transverse
curvature of the solid, the parameter of non-Newtonian behavior, and the concentration
factor on heat and mass transfer and friction in the free convection of nonlinearly-vis-
cous liquids around axisymmetric solids is determined.

In the range of low shear velocities realized under conditions of free convection, many fluid media
exhibit considerable anomalies of viscosity [1, 2]. Problems of free convection in non-Newtonian and es-
pecially nonlinearly-viscous liquids have therefore become particularly pressing and are of great interest
in both theory and practice. Until recently the analysis of free-convection problems has been limited by
the assumption of constant physical properties of the medium, for example, in [3, 4]. However, the tem-
perature drops characteristic for conditions of free convection may be very considerable. Allowance for
the temperature dependence of the rheological characteristics is then essential. This applies primarily
to the consistency coefficient, i.e., an analog of viscosity. Free convection may be caused not only by a
temperature field gradient but also by concentration inhomogeneity. It is therefore interesting to consider
the simultaneous influence of these factors on friction and heat transfer during free convection.

The dimensionless equations of the spatial boundary layer for the free convection of a binary mix~
ture of nonlinearly-viscous liquids around axisymmetric solids take the following form in the asymptotic
approximation for a thin solid of revolution:
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The introduction of the dependent and independent variables and parameters
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Fig,1, Characteristics of heat transfer (a) and friction at the wall
(b) as functions of the curvature parameter (n =1): 1) b =03 2) 1;
3) 2. Continuous curve k = 0, broken curve k = 1.
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where ¥ is determined from the continuity equation
Ty = .QE y, IV == _a.l?.
oy 0x

and the requirement that the system of equations derived from (1)-(4) with due allowance for (6) should be
automodel, leads to the equations
1 n-—-1

n _ = n
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In order to eliminate the constants from the final system of equations we must put
Q= gﬁv—lw , b= cl—ﬁvV—v,

The problem then reduces to a system of nonlinear differential equations
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The 1ocal heat- and mass-transfer coefficients and the coefficient of friction are determined from the
equations
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Fig.2. Characteristics of heat transfer (a) and friction at the wall
(b) as functions of the curvature parameter (n = 0.5): 1) b = 0; 2) 1;
3) 2. Continuous curve k = 0, broken curve k = 1.

The averaged coefficients respectively equal
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In order to obtain numerical results we must make the form of the w(®,) relationship quite specific,
In the present investigation we take an exponential temperature dependence of the consistency coefficient
(the Reynolds relationship)

0(9)) = exp(—10,), {12)

which is fully justified for many real systems {5]. In certain papers, such as [6, 7], the index of the ex-
ponent in Eq. (12) includes a factor n. This does not introduce any major change into the calculation since
the results of the present analysis may easily be converted to this kind of relationship.

The system of equations (8), with due allowance for Eq.(12), was solved numerically on the Minsk-
22 computer by the modified Newton method for the case Pry = Pry,. Some of the results of the calculations
are presented in Figs.1 and 2. An increase in the parameter in Eq. (12) leads to an intensification of heat
transfer (Figs.la and 2a). The effective viscosity falls. and this leads to a fall in the friction characteris-
tics for the case of a Newtonian liquid (Fig. 1b) and to a rise in these characteristics as b increases for
n = 0.5 (Fig.2b). Thus, allowance for the temperature dependence of the consistency coefficient leads to a
qualitatively new picture of the whole process.

Changes in the curvature parameter A and also an increase in the value of K act in qualitatively
the same manner for all n; with increasing A or K both the heat and mass transfer and the friction on the
surface of the solid increase (Figs.1 and 2). When the thickness of the boundary layer is much smaller
than the radius of the solid of revolution (6/r, < 1) the spatially axisymmetric problem is reduced to the
system of equations (8) (case A = 0) by the introduction of the variables
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Here the heat- and mass-transfer coefficients are respectively written
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Fig.3. Characteristics of heat transfer and friction

at the wall as functions of the parameter of non-New-
tonian behavior (A =0, k=0): 1) b =0; 2) 1; 3) 2.
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In particular cases we have:
1. Sphere cos oy = sin, ry = sin X.
2. Coune cos oy = const, ry =x sin ay.
3. Spatial critical point cos &y =X. Iy =X
4, Vertical cylinder cos ay =1, ry=1.

The system of equations (8) (case A = 0) also constitutes the reduced form of problems of the free
convection of a binary mixture of non-Newtonian liquid around flat solids, in particular free convection
around 1) a vertical plate, 2) a horizontal cylinder. 3) a plane critical point, 4) a wedge. In this case we
must introduce the new coordinates proposed in [3], replacing x by Ix|in these.

The results of our numerical calculations of the problem of free convection around these eight types
of solid are shown in Fig.3. We note that, whereas the heat-transfer coefficient increases monotically with
increasing values of the parameter b for the n values studied. the friction characteristics increase with
rising b for extremely pseudoplastic liquids (n < 0.75) and diminish as the pseudoplasticily becomes weaker

(n >0.75).
NOTATION

1 _n_ o 1 n
s v e s S : ; . :
x = 1 y= _L G pr T —Oz—crfw'r” p; 1, dimensionless coordinates; x', y', dimensional
s s b2 . T —Tw ) . . ' C—Cwx . .
coordinates; L, characteristic size; ;= -~ ; dimensionless temperature; @ . dimensionless
o o0 Loo )

concentration; Ty, Cy, absolute temperature and concentration at the wall; T, Cw, absolute temperature
2 3{n~—1) . 3(a~1)
[ &Y 5 c
and concentration ag y—=; Pry = pi" (— ” ) e LH"" [LBg (To— To)2* Y, Pry = pr ( k }i«rn f_l+n [Lfg (Co— Co) POFFT |
Yy o

2] 128 (T — Too)]E"? 27 BB () __Cw 2-11 .
modified Prandtl numbers; Gry = e [Be ( /‘:Z ) , Gry— -2 {Be ¢ k‘; )] , modified Grashof numbers;

A, thermal conductivity; B, volume expansion coeificient; g, gravitatmn acceleration; k, consistency
coeﬂ:‘;ment n, parameter of non-Newtonian behavior; , modified stream function; w{®), function
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representing the temperature dependence of the consistency; 1y, radius of the solid of revolution;
n, f{0), automodel variables; A, curvature parameter; Nuy, 9, local Nusselt numbers and co-

efficient of friction; Nuy ,, Ff averaged Nusselt numbers and coefficient of friction; @y, angle between the
normadl to the contour of the solid and the direction of gravity,
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